الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 باك علوم رياضية

8: المتتاليات العدية

نعتبر المتتالية العددية $\left(u_{n}\right)_{n>0}$ المعرفة كما يلي:

$$\begin{cases} \mathbf{u}_0 = 3 \\ \forall \mathbf{n} \in \mathbb{N} : \mathbf{u}_{n+1} = 3 - \frac{9}{4\mathbf{u}_n} \end{cases}$$

 $. \forall n \ge 0 : u_n > \frac{3}{2}$ بين أن:

بين أن: (u,) تناقصية.

. $\forall n \in \mathbb{N} : v_n = \frac{2}{2n-3}$ نضع $\underline{2}$

 $rac{2}{1}$ بين أن المتتالية $\left(\mathrm{v_n}
ight)_{\mathrm{neN}}$ حسابية وأساسها

ب_ حدد الحد العام للمتتالية v ثم استنتج أن :

$$\forall n \in \mathbb{N} : u_n = \frac{3}{2} \left(\frac{n+2}{n+1} \right)$$

. $S_n = \sum_{j=1}^{j=n} V_j$: $\frac{1}{2}$

.02نعتبر المتتالية العددية (u_n) المعرفة ب :

. \mathbb{N} نك $\mathbf{u}_{n+1} = \frac{\mathbf{u}_n}{3 - 2\mathbf{u}}$ و $\mathbf{u}_0 = \frac{1}{2}$

. $\forall n \in \mathbb{N}$; $0 < u_n < 1$: أبين أن

ب- أدرس رتابة (u_n).

نضع لكل \mathbf{n} من $\mathbf{v}_{\mathrm{n}} = \frac{\mathbf{u}_{\mathrm{n}}}{\mathbf{a} + \mathbf{u}} : \mathbb{N}$ عدد حقيقي.

اية هندسية. $v_{
m n}$ حدد قيمة a لكي تكون $v_{
m n}$ متتالية هندسية.

a = -1: نفترض أن

 \cdot n جدد (v_n) بدلالة

. $\forall n \in \mathbb{N} ; 0 < u_n < \frac{1}{3^n} :$ ين أن $\underline{2}$

 $\mathbf{u}_{_{1}}=\mathbf{u}_{_{0}}=\mathbf{u}_{_{0}}=\mathbf{1}$: المعرفة ب $\mathbf{u}_{_{0}}=\mathbf{u}_{_{0}}=\mathbf{u}_{_{0}}=\mathbf{u}_{_{0}}$ و

 $\left(v_{n}
ight)$ و لكل $u_{n}=rac{3u_{n-1}u_{n-2}}{u_{n-2}+2u_{n-1}}$ ؛ $n\geq 2$ و لكل

. $\forall n \in \mathbb{N}^*$; $\mathbf{v}_n = \frac{1}{\mathbf{u}} - \frac{1}{\mathbf{u}}$: حيث

1. بين أن : (v) هندسية .

. n بدلالة u عدد <u>.2</u>

 $\mathbb N$ نتكن $(a_{_{\mathbf n}})$ و $(\mathbf b_{_{\mathbf n}})$ متتاليتين معرفتين بما يلي : لكل

$$\begin{cases} b_0 = b \\ b_{n+1} = \frac{1}{3} (a_n + 2b_n) \end{cases} \qquad \begin{cases} a_0 = a \\ a_{n+1} = \frac{1}{3} (2a_n + b_n) \end{cases}$$

. \mathbb{N} نضع $\mathbf{v}_n = \mathbf{a}_n - \mathbf{b}_n$ و $\mathbf{u}_n = \mathbf{a}_n + \mathbf{b}_n$:

1. بين أن : (u متتالية ثابتة ثم حدد قيمتها .

المميزة . $\left(v_{n}\right)$ هندسية ثم حدد عناصرها المميزة . $\frac{1}{2}$

 v_n بدلالة ر v_n

. n عدد (b_n) و (a_n) بدلالة

 $\mathbf{u}_{_{1}}=rac{1}{2}$ و $\mathbf{u}_{_{0}}=-1$: المعرفة ب المتتالية العددية $\left(\mathbf{u}_{_{\mathrm{n}}}
ight)$ المعرفة ب

. $\forall n \in \mathbb{N} \; ; \; u_{n+2} = u_{n+1} - \frac{1}{4}u_n \;$

. u₃ و u₂ أحسب

. $\mathbf{w}_{n} = \frac{\mathbf{u}_{n}}{\mathbf{v}}$ و $\mathbf{v}_{n} = \mathbf{u}_{n+1} - \frac{1}{2}\mathbf{u}_{n} : \mathbb{N}$ ف من \mathbf{n}

المميزة. (v_n) متتالية هندسية و حدد عناصرها المميزة.

 $w_{
m n}$ بين أن : $w_{
m n}$ متتالية حسابية و حدد عناصرها المميزة.

. $\forall n \in \mathbb{N}$; $\mathbf{u}_n = \frac{2n-1}{2^n}$: استنتج أن

. $\forall n \in \mathbb{N}^* \setminus \{1,2,3\}$; $2n^2 \ge (n+1)^2$ بين أن: $\frac{1}{2}$

. $\forall n \in \mathbb{N}^* \setminus \{1,2,3\}$; $2^n \ge n^2$: ب. برهن بالترجع أن

. $\forall n \in \mathbb{N}^*$; $0 < u_n < \frac{2}{n} : 1$ أثبت أن $\underline{\underline{4}}$